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Abstract 

 

The vertical scales of large-scale achievement tests created by using item response 

theory (IRT) models are mostly based on cluster (or correlated) educational data in which 

students usually are clustered in certain groups or settings (classrooms or schools). While 

such application directly violated assumption of independent sample of person in IRT, the 

consequence of such violation is usually ignored in practice.  The purpose of this study is to 

investigate the effect of ignoring hierarchical data structures on the accuracy of vertical 

scaling by using regular Rasch model and mixed-effect or multilevel Rasch Model. 
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Introduction 

 

When conducting education research using educational assessment data, such as 

assessing the long term effectiveness of certain school or state programs for student 

achievement growth, we not only consider scores of each individual student, but also 

consider the social structure and environment in which that student is embedded. For 

example, while reporting individual student achievement growth is one of the most important 

purposes of K-12 achievement assessments, student growth at different aggregated levels 

(class, school, school district, and state) can also be looked at.  A vertical scale connects 

forms constructed to assess each grade student performance across different grades and can 

be used to track growth over time and model changes in student achievement (Kolen & 

Brennan, 2006).  Because of the unique properties of vertical scale, many states and 

standardized large-scale achievement tests (e.g., TerraNova, Iowa Test of Basic Skill, 

Stanford Achievement Test, and Measures of Academic Progress) report scores on a vertical 

scale that allows assessment of student group trends and individual growth in achievement. 

Using a vertical scale to indicate student progress over a period of time provides vital 

information about on education from the federal to individual student levels.  

Although vertical scale has been widely used, many of the practical concerns in test 

development, scaling design, data collection, statistical method, and analysis results have to 

be solved to reduce both systematic and random errors in vertical scaling.  In practice, when 

a vertical scale is constructed, IRT (Hambleton & Swaminathan, 1985) models are often used 

to fulfill the purpose. The use of any of IRT models is validated only under the assumptions 

required being satisfied for the mathematics model, for examples, the unidimensionality and 

local independent assumptions (Lord, 1980). One of the assumptions for equating or scaling 

standardized achievement tests using IRT is the independence of observations in sample. 

However, calibrating, equating and scaling are often conducted based on a representative 

sample selected using cluster sampling or stratified sampling methods. Such sampled data 

always involve nested data structure where individual students are nested within 

organizational settings, such as class or school. These dependencies between individuals and 

clusters cause problems for proper application of IRT.  
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The correlation within clusters is called intra-class correlation (ICC). The ICCs 

measure the dependence of the students within groups (class, school, or school district, etc.). 

It is the ratio of the variance (σ2) component due to a particular group level to the total 

variance for individual students.  There are two scenarios in discussing ICC of cluster effect 

of data in this study. If dependent variable can be treated as continue variables such as 

student test scores, then ICC can be discussed in the context of general linear model 

framework (Timm & Mieczkowski, 1998); if dependent variable is not continue variable 

such as student item score that dichotomously scored as zero or one, then ICC can be 

discussed in the context of generalized linear model framework (McCullagh & Neder, 1989).    

Generally, an appropriate context should be given when ICC is used. The “ICC” is 

unambiguous when we are dealing with the random effects ANOVA – two levels, e.g., 

students nested within schools. All it refers to is the proportion of total variance attributable 

to differences in school means. However, in a 3-level setting (e.g., students, classrooms, and 

schools), proportion of total variance for classrooms must be clearly distinguished from the 

proportion of total variance for schools. For example (see Appendix A for more details) of 

student test score as dependent variable, if total variance is expressed in terms of a three-level 

hierarchical data structure (level-1: student, level-2: class, level-3: school), 

                 σ2= σ2
level-3 + σ2

level-2 + σ2
level-1 

then the ICC for students within class is 

              ICClevel-2 = (σ2
level-2)/( σ2

level-3 + σ2
level-2 + σ2

level-1). 

The ICC for student within school is 

                          ICClevel-3 = σ2
level-3/( σ2

level-3 + σ2
level-2 + σ2

level-1). 

However, if student item score as dependent variable, then the ICCs for IRT model 

that assume that student ability as a random variable with standardized normal distributed 

N(0,1) in GLM context can be expressed as in three levels, level-1: item, level-2: student, 

and level-3: classroom (or school), 

                   ICClevel-2 = 1/( σ2
level-3 + 1 + π2/3), and 

                               ICClevel-3 = σ2
level-3/( σ2

level-3 + 1 + π2/3). 

Because probability of item responses are logistic given item parameters and ability, 

the individual level variance equal to π2/3 (Goldstein, Browne, Rashash, 2002; Rashash, 

Steele, Browne, 2003; Snijders, Basker, 1999) or ≅ 3.29. It can be seen, in the traditional IRT 
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calibration context, one may argue that between-examinee ICC is not zero but is fixed by 

default at 1.0/(1.0+ π2/3) since the distribution of ability is assumed to be distributed normal 

with mean 0 and variance 1.0. The argument to be made here is that, in practice, the 

distribution of clusters of students is likely to be distributed with non-zero mean and variance. 

If students are sampled in clusters, the assumption of independence among students, a 

necessary condition for IRT, is violated.  

Many published literatures have discussed the ICC issues in statistical field 

(Cochrane, 1977; Cornfield, 1978; Kish, 1965; Walsh, 1947) and medical field (Donner & 

Koval, 1980, 1983; Rosner, 1984; Munoz, Rosner, & Carey, 1986). Few studies have 

examined the dependence nature of educational data in large scale achievement context.  

Schochet (2005) summarized some studies on estimation of ICC for different standardized 

tests (Table 1). Wang (2006) conducted study on the effect of cluster data at test score level 

on sample size requirement for IRT calibration. Partial results of ICC for different subject 

areas of standardized achievement tests are listed in Table 2. Besides the effect of large-than-

zero ICC large on accuracy of IRT parameter estimates, Wang pointed out that the sample 

sizes of equating and calibration used by states and testing vendors were, sometimes, much 

smaller than what IRT models would required. The degree of reduction in sample size is 

measured by the design effect (Deff)(Kish, 1965) or a correction factor that correct variance 

inflation caused by within cluster correlation for simple random samples (SRS) and cluster 

samples (CS):  

                               Deff = 
(SRS) Variance
(CS) Variance  = 1 + (average cluster size -1) * ICC. 

  It can be seen that all achievement tests show certain degree of dependence in 

samples. Ignoring cluster nature of educational data in applying IRT model could lead to 

biased parameter estimates and misleading results.  Because Rasch (Rasch, 1960) model is 

one of the most commonly used IRT models in current achievement tests, this study used 

Rasch model as an example to illustrate the problems neglecting the cluster data structure in 

regular vertical scaling and their solutions.  

The problems of mistaking CS as SRS can be coped with using multilevel models 

(Bryk & Raudenbush, 1992; de Leeuw & Kreft, 1986; Goldstein, 1995; Longford, 1993; 

Raudenbush, 1988). Some researchers (Adams, Wilson, & Wu, 1997; Kamata, 2001; 
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Mellenbergh, 1994; Mislevy & Bock, 1989) have shown that IRT models can typically be 

treated as logistic mixed models. Mislevy and Bock (1989) applied multilevel modeling in 

the framework of IRT models where group-level and student-level effects were combined in 

a hierarchical IRT model. Adams et. al. (1997) showed that latent ability could be used as 

outcomes in a regression analysis. They showed that a regression model on latent ability 

variables could be viewed as a two-level model where the first level consisted of the item 

response measurement model which served as a within-student model and the second level 

consisted of a model on the student population distribution, which served as a between-

students model. Fox and Glas (2001) introduce a general approach for binary outcomes in a 

strictly clustered setting (i.e., items are nested within students and students are nested within 

schools). This general approach entails a multilevel regression model on the latent ability 

variables allowing predictors on the student-level and group-level.  

Many of these developments fall under the rubric of generalized linear mixed model 

(GLMM, McCulloch & Searle, 2001), which extend generalized linear models (GLM, 

includes logistic regression) by the inclusion of random effects in the predictor. Recently, 

Rijmen, Tuerlinckx, De Boeck, & Kuppens (2003) provide a comprehensive overview and 

bridge between IRT models, multilevel models, mixed models, and GLMMs. According to 

them, only the Rasch model (RM, Rasch, 1960) and family of Rasch models, such as linear 

logistic test model (LLTM, Scheiblechner, 1972; Fischer, 1973), the rating scale model 

(RSM; Andrich, 1978), the linear rating scale model (LRSM; Fischer & Parzer, 1991), the 

partial credit model (PCM; Masters, 1982), the linear rating scale model (LRSM; Fischer & 

Ponocny, 1994), and the mixed Rasch model (Rost, 1999), belong to the class of GLMMs. 

Other IRT models, such as two- and three-parameter models are not within the class of 

GLMMs because they include a product of parameters and no longer linear.  Rasch family 

models have the following common properties: sufficiency of the raw scores, parallel item 

characteristic curves, specific objectivity, and latent additivity. Traditional RM is still widely 

used in education testing in which its assumptions are often violated because students are 

clustered with classes and schools. The mixed-effect (or multilevel) Rasch model (MERM) 

that explicitly recognize the clustered nature of the data and directly incorporate random 

effects to account for the various dependencies is used in this study. Because MERM is a 
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special case of the mixed-effects logistic regression model (MELRM), here we present 

MELRM and show how it relates to MERM. 

MELRM is a common choice for analysis of multilevel dichotomous data (that has 

value 0 or 1). The major differences between GLMM and general linear model are in two 

aspects. First, the distribution of dependent variable in GLMM can be non-normal, and does 

not have to be continuous. Secondly, dependent variable in GLMM still can be predicted 

from a linear combination of independent variable(s), but they are "connected" via a link 

function. In the GLMM context, this model utilizes the logit link, namely (De Boeck & 

Wilson, 2004) 

                    jl
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K
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jkkij
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
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=µ=µ                          (1)                              

where i for person, i=1,2,…, I; j for item, j=1,2,…, J; k for item predictors, k=0, 1,…, K; l for 

person predictors, l=1,2,…,L. Xjk is the value of predictor k for item j; Zjl is the value of 

predictor l for item j; βk is the fixed regression weight of predictor k and θil is the random 

regression weight of predictor l for person i. The equation (1) can be expressed in matrix 

notion 

                                                        ηi = Xβ + Zθi ,                                                        (2) 

 

here  X is a J x K design matrix for fixed effects;  β is a K x 1 vector of fixed regression 

weights; Z is a J x L design matrix for random effects and θ is L x 1 vector of random 

regression weights for person. ηij is linear predictor, the conditional expectation μij = E(Yij | 

X, β, Z, θ) equals P(Yij = 1| X, β, Z, θ), namely, 

 

                         P(Yij = 1|X, β, Z, θ) = g−1(ηij ) = Ψ(ηij )                                              (3) 

 

the conditional probability of a response given the random effects (and covariate values if 

there is any one)  and  Yij is observations.  where the inverse link function g−1(ηij ) or Ψ(ηij ) 

is the logistic cumulative distribution function (cdf), namely Ψ (ηij ) = [1 + exp(−ηij)]−1.  

RM gives the probability of a correct response to the dichotomous item j (Yij = 1) 

conditional on the random effect or ‘ability’ of subject i (θi): 
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where bj is the difficulty parameter for item j. Comparing (1) to (4), it can be seen that RM is 

special case of a random-intercepts model that includes item dummies as fixed regressors and 

here we call it MERM. The assumption of local independence means that, for a given test, 

the probabilities of given items (j=1, 2, …,J) for one person can be jointly determined by 
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or the probabilities of given persons (i= 1,2,…, I) for one item j can be jointly determined by  

 

                     ∏
=

===
I

1i
Iij2j21j1iijijij )y(p)...y(p)y(p)y(p)yY(p θθθθθ                (6) 

 

for one item. Cluster sample used in RM directly violates the assumption local independence 

assumption from person perspective, i.e., equation (6). 

Though IRT models were not originally cast as GLMMs, formulating them in this 

way easily allows covariates to enter the model at either level (i.e., items or subjects).   

Kamada (2001) formulated MERM in the context of multilevel model (multilevel RM) 

within GLMM framework.  One of multilevel RMs he proposed is three-levels Rasch model 

(item, student, classroom or school): 

 

 

Level 1 (Item-Level) Model: 
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where i = 1,2,…,k-1for items, j = 1,2,…,n for students, m = 1,2,…,r for class. pijm is the 

probability that person j in class m answers item i correctly and Xqijm is qth dummy variable 

(q = 1,2,..,k-1) for the ith item for person j in class m. β0jm is the effect of the reference item, 

and βqjm is the effect of the qth item compared to the reference item.  

Level 2 (student-Level) Model: 

The student-level models for student j in class m are written as  

 β0jm = γ00m + u0jm 

            β1jm = γ10m 

β2jm = γ20m 

   : 

            β(k-1)jm = γ(k-1)0m, 

where u0jm ~N(γ00m, τγ) and τγ, the variance of u0jm within class m is assumed to be identical 

across classes. 

 

Level 3 (class-Level) Model: 

In this model, the intercept γ00m is only term that arises across classes and item effects are 

constant across classes. For class m, 

 γ00m = π000 + r00m 

 γ10m = π100 

γ20m = π200 

 : 

            γ(k-1)0m = π(k-1)00, 

where r00m ~N(0, τπ).  The combined model is 

(8)                                                  

 

000000 ).()ur(ur

)()u(
p1

p
log

00ijm0m0000ijm0m00

m0ijm0m00ijm
ijm

ijm

ππππ

γγη

−−−+=+++=

++==










−  



www.manaraa.com

  

10 

 

The probability that person j in class m answers item i correctly is 

(9)                                . 
000 )]}()ur[(exp{1
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In current educational testing, little work has been done on using MERM to create 

vertical scales which are important in determining student achievement growth. As a matter 

of fact, a few attempts tried to investigate the cluster effect on vertical scale.  The purpose of 

this study is to investigate the effect of ignoring hierarchical data structures by using RM on 

the accuracy of vertical scaling by using MERM in GLMM framework. 

 

Methods 

 

Because true cluster sampling effect is not known in practical setting, the Monte 

Carlo (MC) technique was used to investigate effect of ignoring cluster data structures on 

vertical scale by using RM and MERM.  All simulation data were generated based on these 

models. 

The simulated vertical scales were constructed across grade 4 to grade 5 using a 

common-person design which set up the linking in a vertical scale by using both below-grade 

and on-grade items to link adjacent grades (Table 3). Test length is 40 items across grades 

and sample size is 1000 persons per grade.  To simulate the true growth patterns, two factors 

were manipulated with multiple levels: the mean of the ability distribution and the standard 

deviation (SD) of the ability distribution.  The combination of these two factors determines 

the simulated growth patterns of student achievement.  

First, for all simulations, three fixed tests across grades with 40 items per grade were 

used. All items were generated from N(M, SD) and once they were generated, then applied to 

all simulation conditions. Table 4 lists true distribution parameters that generate true item 

difficulties across grades.   

Second, two types of samples were generated: simple random samples (SRS) and 

cluster samples (CS) with different ICCs (0.2, 0.3, and 0.4) for each grade. For both samples, 

there are 1000 observations per grade. The SRS are from N(M, SD)  For CS, data for student 

in classroom/school were simulated using a multilevel model without explanatory variable at 
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both person and classroom or school levels.  20 replications will were conducted across all 

conditions generated from distributions listed in Table 4. 

 

Simulation Procedure       

Two types of data set were simulated by using RM and MERM.  Given parameters 

defined by the specifications mentioned above, the steps involved in the simulation process 

are as follows: 

Step 1:  Two samples of 1000 simulated examinees (simulees) of true abilities were  

generated from standard normal distribution; One is for RM, the other is for MERM. 

For MERM, the correlated data were generated with three different ICC values (0.2, 

0.3, 0.4) under the assumption that the average cluster (class or school) size was 25 

and the number of clusters was 25.   

Step 2:  The known item parameters (table 4) were used to calculate the probability of  

             each simulee for both RM and MERM. 

Step 3:  The generated probabilities (P) were compared to a uniform (0,1) random number   

             (RN), if the P > RN, the simulee was given a correct score (1), otherwise an incorrect  

             score (0).    

The whole process was repeated 20 times. Different random seeds were used as responses 

data were calibrated using the WINSTEPS and HLM, respectively.  The estimated and true 

parameters were compared in terms of five dependent variables (see following section).  

 

Calibration Methods 

Two different software packages WINSTEPS and HLM, were used for calibration in 

this study. These software packages are based on different estimation methods. WINSTEPS, 

is the most widely-used Rasch software (Association of Test Publishers, 2001). It pays little 

attention to the estimation of effective standard errors for Rasch models, especially under the 

complex sample designs typically found in state testing programs (Cohen, Chan, Jiang, & 

Seburn, 2008). HLM6 software (Raudenbush, Bryk, Cheong, & Congdon, 2004) estimates 

model coefficients at each level of hierarchical data.   

We initially also attempted to use the AM software (American Institutes for Research 

& Jon Cohen, 2005) to calibrate the simulated data. AM software produces IRT item 
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parameters and uses nonparametric marginal maximum likelihood (NPMML) approach to 

estimate examinee proficiency on the theta scale. AM provides appropriate standard errors 

for multistage complex samples using a Taylor-series approximation. Cohen et al. (2008) 

claimed that NPMML results in more consistency of the estimators in both simple random 

samples and more realistic multistage samples than conditional maximum likelihoods (CML, 

Rasch, 1961) used in WINSTEPS. However, currently AM’s IRT Model Simulation 

procedures do not provide person ability estimates. Running AM in the interactive mode for 

each replication of the simulated data separately would be too time-consuming. Therefore 

discussion of AM from AM was not included in this study. 

 The effect of ignoring correlated data is evaluated in terms of nature of data (i.e., 

SRS or CS) and models (or software) used (i.e., RM or MERM).  RM was calibrated by 

using WINSTEPS and MERM was calibrated by using HLM.  Table 5 depicts the design of 

calibration procedure.  

 

Scaling 

 

         All vertical scaling was developed by separate calibrations for each grade score first, 

then adjacent grades was linked by using linear transformation such as mean/mean method 

(Kolen & Brennan, 2004). However, at each grade, concurrent calibration method was used 

for both off-grade and on-grade student responses to a total 80 items. Because each grade has 

40 anchor items, here we use grade subscript indicate test form. Let θ and b on grade K be 

linearly transformed onto grade K+1 by  

 

           θ(K+1,i) = θ(K,i) + B,                                                                                (10) 

                                    b(K+1,j) = b(K,j) + B,                                                                                (11) 

 

where θ(K+1,i)  and θ(K,i)  are ability θ values for individual i on Scale K+1 and Scale K. b(K+1,j)  and 

b(K,j)  is item difficulty b values for item j on Scale K+1 and Scale J.  B is a constant in a linear 

transformation equation (intercept) for Rasch model and B is:  

 

                                    B = µ(bK+1) - µ(bK) = µ( θK+1) - µ( θK)                                                (12) 
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Where µ(* K+1) and µ(* K) are either the mean of item or the mean of person parameters at grade 

level K+1 or K. 

 

Evaluation of Recovery of Results 

 

There are in total 3 ICCs (i.e., 0.2, 0.3, 0.4) x 2 software (WINSTEPS and HLM) x 3 

grades (4, 5, and 6) = 18 simulation conditions. An another 3 independent WINSTEPS runs 

of grade 4, and 5, and 6 for ICC=0 data were not included in the total run. 

The bias, SE, RMSE, and correlation between true and estimated parameters are used 

to evaluate how well true parameters are recovered for each of 6 simulation conditions.  

These formulas are,      
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where i, g, and r represent individual, grade, and replication, respectively. ĝriθ is the 

estimated person parameter for grade g, replication r, and person i. gθ is the mean of the 

generated true students’ abilities in grade g. Np is the number of simulated examinees and NR 

is the number of replications of the simulation.  Different random numbers are used as seeds 
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for each of the 20 replications. Based on a past research suggestion (Harwell, Stone, Hsu, & 

Kirisci, 1996), both descriptive and inferential procedures were used to summarize the 

simulation results.   

 

Results 

 

(1) Recovery of Person and Item Parameters 

Tables 6 and 7 summarize the recovery indexes (Bias, SE, RMSE, and correlations) 

for ability and difficulty parameters used to evaluate the calibration accuracy in different 

simulations. The effect of two independents variables (ICC and model) on dependent 

variables (parameter estimates) were analyzed using two-way analysis of variance (two-way 

ANOVA) for both ability and difficulty. Since the study focus on the effect of nature of data 

(i.e., different ICC conditions) and model (RM and MERM) on IRT estimates of item and 

person parameters.  The results of ANOVA of means of both ability and item difficulty 

parameter estimations across grades are presented in Tables 8 and 9.  If the overall F-test is 

statistically significant, then it means that model accounts for a significant amount of 

variation in the dependent variables.  In general, for both ability and item parameter estimates, 

the means of estimates across grades are statistically significantly affected by both model and 

ICC factors except for grade 4 mean estimate of item difficulty.  R2 indicates the percent of 

the variance in the dependent explained uniquely or jointly by the independents.  R2 can also 

be interpreted as the proportionate reduction in error in estimating the dependent when 

knowing the independents. For example, for the given the simulated conditions used in this 

study, for grade 5 ability estimates, the model and ICC account for about 90% total variance 

in mean estimates of ability; while the model and ICC account for about 15% total variance 

in mean estimates of item difficulty.  From Tables 8 and 9, it is clear that model and ICC 

account for more variances in ability estimates than variance in item difficulty estimates, 

which is not surprising for the given the fact that the focus of this study is on person side of 

data, not on item side of data.  Results show that cluster data or correlated data and models 

used to fit the data have significant impact on the accuracy of both person and item 

parameters estimates.  
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Besides, the effect of independent variables on overall dependent variables and the 

effect of each of the independent variables on each of the dependent variables were also 

tested. The main effect of model and ICC factors and the interaction effect between model 

and ICC are also shown in Tables 8 and 9.  For ability estimate, the model factor has 

statistically significant effect on mean of ability estimates across grades; neither the ICC 

factor or the interaction between model and ICC factors has statistically significant effect on 

ability estimates.  This means that, for the given simulation conditions, whether using a 

model that account for correlated data or not has significant impact on the estimated ability 

parameter, although the degree of correlation (ICC=0.2, 0.3, or 0.4) in the correlated or 

cluster sample may not be matter. This result implies that the correlated or clustered data 

should not be treated as if they were random independent data when applying IRT model and 

consequences of violating assumption of IRT models should not be neglected when applying 

IRT model in educational setting.    

Figures 2 to 5 show the Bias, SE, RMSE, and correlation for ability estimates under 

different ICC conditions (I1=0.2, I2=0.3, I3=0.4) and models (MR= calibrating clustered data 

using MERM, R-MR=calibrating clustered data using RM) across grades. The results prove 

that, overall,  MERM model recovers the true ability estimates better in the clustered or 

correlated data than RM does across grades. For example, the RMSE for MR is much lower 

than that of R-MR across grades and ICCs. The correlations between true and estimated 

ability parameters for MR are higher than those for R-MR across ICCs and grades.   

Although there appears to be no clear-cut result, the general trend suggests that the 

degree of clustering or correlating indicated by ICCs has some impact on accuracy of ability 

estimates across grades. For example, for grade 4, the biases of ability estimates of MR for 

all ICCs are smaller than those of R-MR; for grades 5 and 6, however, the biases of ability 

estimates of MR for ICC=0.3 and 0.4 are smaller than those of R-MR, but this is not true for 

ICC=0.2 condition.   

The Bias, SE, RMSE, and correlation for item estimates under different ICC 

conditions (I1=0.2, I2=0.3, I3=0.4) and models (MR= calibrating clustered data using 

MERM, R-MR=calibrating clustered data using RM) across grades are depicted in Figures 6 

to 9. Overall results show that accuracies of true parameter recovery for MR conditions are 

better than those for R-MR conditions across ICCs and grades. The differences of 
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correlations between true and estimated item parameters are, however, not as significant in 

comparison with much the differences of correlations between true and estimated ability 

parameters. 

 

(2) Recovery of Vertical Scale 

Table 9 and Figure 10 present results of vertical scale recovery under different ICC 

conditions (I1=0.2, I2=0.3, I3=0.4) and models (MR= calibrating clustered data using 

MERM, R-MR=calibrating clustered data using RM) across grades. It can be seen that the 

effect of treating clusters data or correlated data as if they were random independent data 

when conducting vertical scaling is not ignorable in terms of vertical scaling accuracy. 
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Discussion and Summary   

 

In developing methods of measuring educational growth for the purposes of 

accountability and AYP, a myriad of decisions must be made to deal with many aspects of 

educational growth. Among these decisions are the methods for demonstrating educational 

achievement from year to year. A vertical scale could serve such a purpose. If a vertical scale 

is chosen to express yearly progress, the design and process to develop the scale must be 

considered.  How accurately a vertical scale reflects the ‘true’ AYP is a crucial issue when 

informing high-stake decisions.  Currently, most of the vertical scales created by states or test 

companies are based on IRT models and the most frequently used IRT model is RM. 

However, the effect of clustering sampling is usually ignored in the practical applications of 

IRT (e.g., equating and scaling) in educational setting, where the data are usually clustered 

(student within classroom, classroom within school, school within school district, etc.).  The 

consequences of treating CS data as SRS data in current vertical scaling practices result in (1) 

reducing effective sample size for IRT model, and (2) increase vertical scaling errors.  

It is very hard, and sometimes impossible, to draw simple random samples of 

individual students without interfering with their normal learning process during school 

hours. The education law and regulation do not allow samplers to cherry pick students across 

classroom, school, school district, and state. One way to get around this problem is to collect 

a sample as large as possible and then conduct random sampling on individual students from 

the large sample. Unfortunately, most vendors and states don’t have the budget to collect 

large-enough sample to do that. Besides, to waste the rest of student data for the purposes of 

equating and scaling is not likely to be allowed by state and testing vendor for the same 

concerns.  So the chance of improving sampling quality is practically slim if not impossible. 

However, continuing ignoring the consequences of violating IRT model assumptions in 

educational applications such as vertical scaling is unacceptable because actions that come 

out of such applications, too often, are high-stake decisions. One of the viable solutions, if 

there are many, is to use models such as MERM that can account for the clustering nature of 

the data and produce more accurate results instead of avoiding or ignoring the cluster effect 

of samples during the process of vertical scale development. 

 



www.manaraa.com

  

18 

 

References 

 
Adams, R. J., Wilson, M., & Wu, M. (1997). Multilevel item response models: An  

approach to errors in variables regression. Journal of Educational and Behavioral  
Statistics, 22, 47–76. 

 
Association of Test Publishers. (2001). Test publisher 8.2 [Computer software]. 

Washington, DC: Author. 
 
Bates, D. (2007).  Linear mixed model implementation in lme4 Package. URL:  

ftp://ftp.auckland.ac.nz/pub/software/CRAN/doc/vignettes/lme4/Implementation.pdf. 
 
Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item  

parameters: Application of an EM algorithm. Psychometrika, 46, 443–459. 
 
Bryk, A. S., & Raudenbush, S. W. (1992). Hierarchical linear models: Applications and  

data analysis methods. Newbury Park, CA: Sage. 
 
Cochran, W.  (1977).  Sampling techniques.  New York: John Wiley and Sons. 
 
Cohen, J. Chan, Z., Jiang, T., & Seburn, M. (2008). Consistent Estimation of Rasch Item  

Parameters and Their Standard Errors Under Complex Sample Designs. Applied  
Psychological Measurement, 32, 289-310 

 
Cohen, J., & the American Institutes for Research. (2002). AM statistical software (Beta  

version 0.06.00) [Computer software]. Washington DC: American Institutes for  
Research. Available from http://am.air.org 

 
Cornfield, J. (1978).  Randomization by group: A formal analysis.  American Journal of 
 Epidemiology, v108, 2. 
 
CTB/McGraw-Hill. (1997).  Winter norms book: TerraNova. Monterey, CA: Author. 
 
De Boeck, P., & Wilson, M. (Eds.). (2004). Explanatory item response models: A  

generalized linear and nonlinear approach. New York: Springer. 
 
de Leeuw, J., & Krefl, I.G.G. (1986). Random coefficient models for multilevel analysis.  

Journal of Educational and Behavioral Statistics, 11, 57-86. 
 
Donner, A., & Bull, S. (1983). Inferences concerning an intraclass coefficient in the one- 

way random effects model. Ont. Statist. Rev. 54, 67-82. 
 
Donner, A., & Koval, J.J. (1980). The Estimation of Intraclass Correlation in the Analysis  

of Family Data. Biometrics, 40, 393-408. 
 
Doran, H., Bates, D., Bliese, P., & Dowling, M. (2007).  Estimating the Multilevel Rasch  

http://ppw.kuleuven.be/okp/people/Paul_De_Boeck/�


www.manaraa.com

  

19 

 

Model: With the lme4 Package. Journal of Statistical Software, 20, Issue 2.  
 
Fox, J. & Glas, C. (2001). Bayesian estimation of a multilevel IRT model using Gibbs  

sampling. Psychometrika, 66, 269–286. 
 
Goldstein, H. (1995).  Multilevel statistical models, 2nd Edtion.  London: Arnold. 
 
Goldstein, H., Browne, W., Rashash, J. (2002) 
 
Hambleton, R. K., & Swaminathan, H. (1985). Item Response Theory:  Principles and  
        Applications. Boston: Kluwer. 
 
Harcourt Educational Measurement. (2002). Stanford Achievement Test, 10th Edition.  

San Antonio, Texas. 
 
Hoover, H. D., Dunbar, S. D., & Frisbie, D. A. (2003). The Iowa Tests of Basic Skills.  

Interpretive guide for teachers and councelors. Forms A and B. Levels 9-14. Itasca, Il: 
Riverside Publishing. 

 
Kamata, A. (2001). Item analysis by the hierarchical generalized linear model. Journal of 

Educational Measurement, 38, 79–93. 
 
Kish, L.  (1965).  Survey sampling.  New York: John Wiley and Sons. 
 
Kolen, M. J., & Brennan, R. L. (2004). Test equating: methods and practices (2nd  
 ed.). New York: Springer. 
 
Longford, N.T. (1993). Random coefficient models. New York, NY: Oxford University  

Press. 
 
Lord, F.M. (1980). Applications of item response theory to practical testing problems.  

Mahwah, NJ: Erlbaum. 

 
Mellenbergh, G. J. (1994). Generalized linear item response theory. Psychological  

Bulletin, 115, 300–307. 
 
McCullagh P, Nelder J (1989). Generalized Linear Models. Chapman and Hall, 2nd  

edition. 
 
McCulloch, C.E. & Searle, S.R. (2001). Generalized, Linear, and Mixed Models, Wiley,  
  New York. 

 
Munoz, A., Rosner, B. & Carey, V. (1986).  Regression analysis in the presence of  

heterogeneous intraclass correlations. Biometrics, 42, 653-58. 
 



www.manaraa.com

  

20 

 

Mislevy, R.J., & Bock, R.D. (1989). A hierarchical item-response model for educational  
testing. In R.D. Bock (Eds.), Multilevel analysis of educational data (pp. 57-74).  
San Diego, CA: Academic Press. 

 
NWEA (2003). Technical manual for use with Measures of Academic Progress and  

Achievement Level Tests. Portland, OR: Northwest Evaluation Association. 
 
Pituch, K. A. (1999). Describing school effects with residual terms: Modeling the 

interaction between school practice and student background. Evaluation Review, 
23(2), 190-211. 

 
Rasch, G. (1960). Probabilistic Models for Some Intelligence and Attainment Tests,  

Danish Institute of Educational Research, Copenhagen. 
 
Raudenbush, S.W. (1988). Educational applications of hierarchical linear models: A  

review. Journal of Educational Statistics, 13, 85-116. 
 
Rosner, B. (1984). Multivariate methods in opthalmology with application to other  

paired-data situations. Biometrics, 40, 1025-35. 
 
Rijmen, F., Tuerlinckx, F., De Boeck, P., and Kuppens, P. (2003). A nonlinear mixed  

model framework for item response theory. Psychological Methods 8, 185–205. 
 
Roberts, J. S. & Ma, Q. L. (2006). IRT Models for the assessment of change across 

repeated measurements. In R. W. Lissitz (Ed.), Longitudinal and value added  
models of student performance (pp.100-127). Maple Grove, MN: JAM Press. 

 
Rost, J. (1990). Rasch models in latent classes: An integration of two approaches to item  

analysis. Applied Psychological Measurement, 14, 271-282. 
 

Schochet, P. (2005). Statistical power for random assignment evaluations of education  
programs.  Mathematic Policy Research, Inc. Princeton, NJ.  

 
Timm, N. H. & Mieczkowski, T. A. (1997). Univariate & multivariate general linear models 

theory and applications using SAS software. SAS Institute (Cary, NC) 
 

Walsh, J.  (1947).  Concerning the effects of the intra-class correlation on certain  
significance tests.  Annals of Mathematical Statistics, v18. 

 
Wang, S. (2006). Brief study of impact of equating sample size on measurement error for  

catalog products. Research report. Harcourt Assessment Inc. 



www.manaraa.com

  

21 

 

 
Table 1.  Summary of Intra-class Correlation (ICC) Estimates of Standardized Tests Based 
on Schochet (2005) Study. 
 

Data Source Standardized Test 
Used 

Description of Data Grade and  Year Average ICC 
Estimates 

Longitudinal Evaluation of 
School Change and Performance 

Stanford Achievement 
Test (Version 9) 

71 Title I schools in 18 school 
districts in 7 states 

3 grade in 1997 
4 grade in 1998 
5 grade in 1999 

.18 
 

21st Century Community 
Learning Centers Program 

Stanford Achievement 
Test (Version 9) 

30 schools in 12 school 
districts  

1, 3,and 5 grades in 
2002 .18 

Test for America Evaluation Iowa Test of Basic 
Skill (ITBS) 

17 schools in six cities 2 and 4 grades in 
2003 .12 

Prospects Study: Figures 
Reported in Hefberg et al. (2004) 

Comprehensive Test of 
Basic Skills (CTBS) 

327 Title I schools in 120 
school districts 

3 grade in 1991 .22 
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Table 2.  Intra-Class Correlations of Large-Scale Standardized Test across Content Areas and Grades (Class Sizes from 10 to 40) 
 

Grade Total 
Reading 

Word 
Study 
Skill 

Reading 
Comprehension 

Mathematics/ 
Total 

Mathematics 

Mathematics 
Problem 
Solving 

Mathematics 
Procedures Language Spelling Environment Science Social 

Science 

1 0.28 0.28 0.22 0.24 0.24 0.21 0.26 0.25 0.29   
2 0.29 0.26 0.32 0.25 0.26 0.21 0.25 0.16 0.25   
3 0.17 0.14 0.28 0.20 0.17 0.23 0.16 0.09 0.29 0.18 0.20 
4 0.31 0.28 0.32 0.30 0.30 0.28 0.25 0.20 0.25 0.27 0.30 
5 0.29  0.31 0.27 0.25 0.26 0.25 0.16 0.29 0.30 0.30 
6 0.29  0.37 0.31 0.30 0.30 0.22 0.16 0.25 0.24 0.27 
7 0.33  0.21 0.34 0.28 0.39 0.28 0.18 0.29 0.27 0.26 
8 0.37  0.22 0.36 0.33 0.37 0.30 0.26 0.25 0.29 0.31 
9 0.20  0.33 0.18   0.20 0.14 0.29 0.25 0.22 

10 0.28  0.32 0.24   0.31 0.19 0.25 0.22 0.20 
11 0.43  0.22 0.27   0.38 0.34 0.29 0.31 0.25 
12 0.38  0.32 0.21   0.36 0.25 0.25 0.25 0.25 

Mean 0.30 0.24 0.29 0.26 0.27 0.28 0.27 0.20 0.27 0.26 0.26 

 

Table 3. Vertical Scaling Linking Designs for On-grade and Below-grade Items. 

Grade Item 
4 G4_on   
5 G5_below G5_on  
6  G6_below G6_on 

 
Table 4. True Distribution Parameters of Item Difficulties across Grades  ~ N(M, SD)  
 

Grade 
On  Off 

M SD  M SD 
4 0 1  -.5 1 
5 0.5 1  0 1 
6 1.0 1  0.5 1 
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Table 5. Calibration Procedures 

  Model 

  RM (WINSTEPS) MERM (HLM) 

Data 
SRS Yes  

CS Yes Yes 

 

 
 
Table 6. Means (over replication) of the Bias, SE, RMSE, and Correlation of Ability 
Parameter Estimations for Simulation Conditions 
 

Software* Model** ICC Grade Bias SE RMSE Correlation 

WINSTEPS RM 0.0 4 -0.0023 0.0030 0.0038 0.9643 
  0.0 5 -0.0035 0.0020 0.0040 0.9659 
  0.0 6 -0.0032 0.0023 0.0040 0.9671 
        

HLM RMEM 0.2 4 0.0117 0.0000 0.0117 0.9872 
  0.2 5 -0.0140 0.0001 0.0140 0.9872 
  0.2 6 0.0117 0.0001 0.0117 0.9869 
  0.3 4 -0.0150 0.0000 0.0150 0.9878 
  0.3 5 -0.0150 0.0001 0.0150 0.9876 
  0.3 6 -0.0149 0.0002 0.0149 0.9876 
  0.4 4 -0.0162 0.0000 0.0162 0.9882 
  0.4 5 0.0960 0.0001 0.0960 0.9880 
  0.4 6 0.0711 0.0002 0.0711 0.9875 
        

WINSTEPS RM 0.2 4 0.1078 0.1153 0.1578 0.9827 
  0.2 5 0.0756 0.1188 0.1408 0.9825 
  0.2 6 0.0869 0.1314 0.1575 0.9816 
  0.3 4 0.0988 0.1397 0.1711 0.9827 
  0.3 5 0.0909 0.1398 0.1668 0.9827 
  0.3 6 0.0703 0.1458 0.1619 0.9815 
  0.4 4 0.1228 0.1745 0.2134 0.9826 
  0.4 5 0.1799 0.1644 0.2437 0.9826 
  0.4 6 0.1417 0.1491 0.2057 0.9815 

 
Software*: Software used to calibrate response.  
Model**: Model used to generated responses. 
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Table 7. Means (over replication) of the Bias, SE, RMSE, and Correlation of Item Difficulty 
Parameter Estimations for Simulation Conditions 
 

Software* Model** ICC Grade Bias SE RMSE Correlation 

WINSTEPS RM 0.0 4 -0.0056 0.0088 0.0104 0.9978 
  0.0 5 -0.0051 0.0135 0.0144 0.9967 
  0.0 6 -0.0029 0.0126 0.0130 0.9965 
        

HLM RMEM 0.2 4 0.1176 0.1708 0.2073 0.9964 
  0.2 5 -0.0569 0.1532 0.1635 0.9943 
  0.2 6 -0.0269 0.1702 0.1723 0.9943 
  0.3 4 0.0741 0.1668 0.1826 0.9962 
  0.3 5 -0.0432 0.1460 0.1523 0.9940 
  0.3 6 -0.0454 0.1553 0.1618 0.9941 
  0.4 4 0.0858 0.1855 0.2044 0.9959 
  0.4 5 0.0079 0.1825 0.1827 0.9937 
  0.4 6 -0.0048 0.1805 0.1805 0.9937 
        

WINSTEPS RM 0.2 4 0.1075 0.2711 0.2917 0.9965 
  0.2 5 0.0872 0.2587 0.2730 0.9945 
  0.2 6 0.0978 0.2554 0.2735 0.9945 
  0.3 4 0.1056 0.2688 0.2888 0.9964 
  0.3 5 0.1077 0.2706 0.2912 0.9943 
  0.3 6 0.0858 0.2652 0.2788 0.9943 
  0.4 4 0.1355 0.2804 0.3114 0.9962 
  0.4 5 0.2051 0.2648 0.3349 0.9940 
  0.4 6 0.1652 0.2689 0.3156 0.9940 

 
Software*: Software used to calibrate response.  
Model**: Model used to generated responses. 
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Table 8.  Results of ANOVA of Means of the Ability Parameter Estimations across Grades  

Table Source 
 Grade 4  Grade 5  Grade 6 

df SS MS F Pr > F R2  SS MS F Pr > F R2  SS MS F Pr > F R2 

ANOVA Model_A* 5 0.424 0.085 7.650 <.0001 0.251  10.559 2.112 198.390 <.0001 0.897  34.801 6.960 652.870 <.0001 0.966 

 Error 114 1.265 0.011     1.214 0.011       1.215 0.011    

 Total* 119 1.690      11.773         36.016     

                        

Tests Effects Model 1 0.406 0.406 36.550 <.0001   10.554 10.554 991.440 <.0001   34.799 34.799 3264.160 <.0001  

 ICC 2 0.009 0.005 0.420 0.658   0.003 0.001 0.120 0.885   0.001 0.001 0.050 0.949  

 Model*ICC 2 0.009 0.005 0.420 0.658   0.003 0.001 0.120 0.885   0.001 0.001 0.050 0.949  

Model_A*: Model_A here indicates ANOVA model, not IRT model. 

 

Table 9.  Results of ANOVA of Means of the Ability Parameter Estimations across Grades  

Table Source 
 Grade 4  Grade 5  Grade 6 

df SS MS F Pr > F R2  SS MS F Pr > F R2  SS MS F Pr > F R2 

ANOVA Model_A* 5 0.048 0.010 0.170 0.972 0.008  1.012 0.202 4.000 0.002 0.149  0.695 0.139 2.700 0.024 0.106 

 Error 114 6.316 0.055       5.767 0.051       5.872 0.052      

 Total* 119 6.364         6.780         6.566        

                                

Tests Effects Model 1 0.017 0.017 0.300 0.583   0.807 0.807 15.960 0.000   0.605 0.605 11.740 0.001  

 ICC 2 0.013 0.006 0.110 0.892   0.188 0.094 1.860 0.160   0.078 0.039 0.750 0.472  

 Model*ICC 2 0.019 0.009 0.170 0.844   0.017 0.008 0.170 0.848   0.012 0.006 0.120 0.890  

Model_A*: Model_A here indicates ANOVA model, not IRT model. 
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Table 10.  Results of Recovery Vertical Scale (in Logit) under Different Simulation 
Conditions 
 

Software* Model** ICC Grade True mean Estimated mean 

WINSTEPS RM 0.0 4 0.0035 0.0012 
  0.0 5 0.5035 0.5000 
  0.0 6 1.0035 1.0003 
      

HLM RMEM 0.2 4 0.0706 0.0823 
  0.2 5 0.5706 0.5566 
  0.2 6 1.0706 1.0823 
  0.3 4 0.0367 0.0217 
  0.3 5 0.5367 0.5218 
  0.3 6 1.0367 1.0218 
  0.4 4 -0.0047 -0.0209 
  0.4 5 0.4953 0.5913 
  0.4 6 0.9949 1.0659 
      

WINSTEPS RM 0.2 4 0.0706 0.0960 
  0.2 5 0.5706 0.5896 
  0.2 6 1.0706 1.0751 
  0.3 4 0.0367 0.1138 
  0.3 5 0.5367 0.6059 
  0.3 6 1.0367 1.0853 
  0.4 4 -0.0047 0.1390 
  0.4 5 0.4953 0.5840 
  0.4 6 1.4949 1.0707 

 
Software*: Software used to calibrate response.  
Model**: Model used to generated responses. 
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Figure 1.  Bias of Ability Estimates under Different Simulation Conditions 

 

 
Figure 2.  SE of Ability Estimates under Different Simulation Conditions 
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Figure 3.  RMSE of Ability Estimates under Different Simulation Conditions 

 

 
Figure 4.  Correlation between True and Estimated Ability Parameters under Different  

    Simulation Conditions 
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Figure 5.  Bias of Item Estimates under Different Simulation Conditions 

 

 
Figure 6.  SE of Item Estimates under Different Simulation Conditions 
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Figure 7.  RMSE of Item Estimates under Different Simulation Conditions 

 

 
Figure 8.  Correlation between True and Estimated Item Parameters under Different  

     Simulation Conditions 
 



www.manaraa.com

  

31 

 

 
 
Figure 9.  Recovery of Vertical Scale under Different Simulation Conditions 
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Appendix A 

 

Three-Level Models (Raudenbush & Bryk, Hierarchical Linear Models: Application and 
Data Analysis Methods, Second Edition, page 228) 
 
ICC in Fully Unconditional Model 
 
Student-Level Model: 
    
    Yijk = π0jk + eijk, 
 
where 
 
     Yijk is the score of student i in classroom j and school k; 
     π0jk is the mean score of classroom j in school k; and 
      eijk is a random student effect that is the deviation of student ijk’s score from classroom    
mean and    
            eijk~N(0, σ2). 
 
i = 1,2,…,njk student within classroom j in school k; 
j = 1,2,…,Jk classrooms within school k; and  
k = 1,2,…K schools. 
 
Classroom-Level Model: 
 
Classroom mean π0jk as an outcome varying randomly around some school mean: 
 
        π0jk = β00k + r0jk, 
 
where 
     β00k is the mean score in school k; 
     r0jk  is a random classroom effect, the deviation of classroom jk’s mean from the school 
mean and  
            r0jk ~N(0, τπ). Within each school K, the variability among classroom is assumed the 
same. 
 
  
School-Level Model: 
 
School mean β00k as varying randomly around a grand mean: 
 
        β00k = γ000 + u00k, 
 
where  
       γ000  is the grand mean; 
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       u00k  is a random school effect, the deviation of school k’s mean from the grand mean, 
and 
 
       u00k ~N(0, τβ). 
 
If total variance 
 
        Vartotal = Varschool + Varclass + Varstudent 
 
Varschool is variance between schools, which is τβ 
Varclass is variance between classrooms within schools, which is τπ 
Varstudent is variance between students within classrooms and school, which is σ2 
 
So  
 
ICC for schools is ICCschool  
   
ICCschool = Varschool / (Varschool + Varclass + Varstudent) = τβ/( τβ + τπ + σ2) 
 
ICC for classrooms within schools is ICCclass 
 
ICCclass = (Varclass) / (Varschool + Varclass + Varstudent) = (τπ )/( τβ + τπ + σ2) 
 
 


